Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtre
1.
medrxiv; 2024.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2024.02.27.24303385

Résumé

The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.

2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.12.20.23300299

Résumé

Understanding how the global dispersal patterns of seasonal influenza viruses were perturbed during and after the COVID-19 pandemic is needed to inform influenza intervention and vaccination strategies in the post-pandemic period. Although global human mobility has been identified as a key driver of influenza dispersal1, alongside climatic and evolutionary factors2,3, the impact of international travel restrictions on global influenza transmission and recovery remains unknown. Here we combine molecular, epidemiological, climatic, and international travel data within a phylodynamic framework to show that, despite human mobility remaining the principal driver of global influenza virus dissemination, the pandemics onset led to a shift in the international population structure and migration network of seasonal influenza lineages. We find that South Asia and Africa played important roles as exporters and phylogenetic trunk locations of influenza in 2020 and 2021, and we highlight the association between population movement, antigenic drift and persistence during the intensive non-pharmaceutical interventions (NPIs) phase. The influenza B/Yamagata lineage disappeared in a context of reduced relative genetic diversity, moderate lineage turnover, and lower positive selection pressure. Our results demonstrate that mobility perturbations reshaped the global dispersal dynamics of influenza viruses, with potential implications for vaccine design and genomic surveillance programmes. As the risk of future pandemics persists, our study provides an opportunity to assess the impact of NPIs during the pandemic on respiratory infectious diseases beyond the interplay between SARS-CoV-2 and influenza viruses.


Sujets)
COVID-19
3.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.09.13.557637

Résumé

Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Wholesale Seafood Market, the site with the most reported wildlife vendors in the city of Wuhan, China. Here, we analyze publicly available qPCR and sequencing data from environmental samples collected in the Huanan market in early 2020. We demonstrate that the SARS-CoV-2 genetic diversity linked to this market is consistent with market emergence, and find increased SARS-CoV-2 positivity near and within a particular wildlife stall. We identify wildlife DNA in all SARS-CoV-2 positive samples from this stall. This includes species such as civets, bamboo rats, porcupines, hedgehogs, and one species, raccoon dogs, known to be capable of SARS-CoV-2 transmission. We also detect other animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them to those from other markets. This analysis provides the genetic basis for a short list of potential intermediate hosts of SARS-CoV-2 to prioritize for retrospective serological testing and viral sampling.


Sujets)
COVID-19 , Infections
4.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.08.21.23293488

Résumé

SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being identified as a threat, delaying interventions. Understanding the drivers of such silent spread and its epidemic impact is critical to inform future response planning. Here, we integrated spatio-temporal records of international mobility, local epidemic growth and genomic surveillance into a Bayesian framework to reconstruct the early dissemination of Alpha out of the UK in the first three months after emergence. We found that silent circulation lasted from days to months and was logarithmically associated with sequencing coverage. Social restrictions in certain countries likely slowed down the seeding of local transmission by weeks, mitigating the negative consequences of late detection. Revisiting the initial spread of Alpha supports local mitigation at the destination in case of emerging events.

5.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.07.12.548617

Résumé

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.


Sujets)
Syndrome respiratoire aigu sévère
6.
researchsquare; 2023.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2574993.v1

Résumé

While SARS-CoV-2 has sporadically infected a wide range of animal species worldwide1, the virus has been repeatedly and frequently detected in white-tailed deer in North America2–7. The zoonotic origins of this pandemic virus highlight the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, which disseminated across hundreds of kilometers. We discovered that alpha and delta variants evolved in white-tailed deer at three-times the rate observed in humans. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only faster in white-tailed deer but driven by different mutational biases and selection pressures. White-tailed deer are not just short-term recipients of human viral diversity but serve as reservoirs for alpha and other variants to evolve in new directions after going extinct in humans. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal model experiments using viruses isolated from white-tailed deer. Still, SARS-CoV-2 viruses have transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.

7.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.02.23284109

Résumé

SARS-CoV-2 variants of concern (VOCs) arise against the backdrop of increasingly heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron genomes, we identified >6,000 independent introductions of the antigenically distinct virus into England and reconstructed the dispersal history of resulting local transmission. Travel restrictions on southern Africa did not reduce BA.1 importation intensity as secondary hubs became major exporters. We explored potential drivers of BA.1 spread across England and discovered an early period during which viral lineage movements mainly occurred between larger cities, followed by a multi-focal spatial expansion shaped by shorter distance mobility patterns. We also found evidence that disease incidence impacted human commuting behaviours around major travel hubs. Our results offer a detailed characterisation of processes that drive the invasion of an emerging VOC across multiple spatial scales and provide unique insights on the interplay between disease spread and human mobility.

8.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.10.17.22281175

Résumé

Mathematical modeling studies have shown that repetitive screening can be used to mitigate SARS-CoV-2 transmission in primary schools while keeping schools open. However, not much is known about how transmission progresses within schools and whether there is a risk of importation to households. In this study, we reconstructed outbreaks observed during a prospective study in a primary school and associated households in Liege (Belgium) during the academic year 2020-2021. In addition we performed a simulation study to investigate how the accuracy of estimated weekly positivity rates in a school depends on the proportion of a school that is sampled in a repetitive screening strategy. We found that transmission occurred mainly within the school environment and that observed positivity rates are a good approximation to the true positivity rate, especially in children. This study shows that it is worthwile to implement repetitive testing in school settings, which in addition to reducing infections can lead to a better understanding of the extent of transmission in schools during a pandemic and importation risk at the community level.

9.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.476382

Résumé

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Sujets)
Crises épileptiques
10.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.11.12.468374

Résumé

Current licensed COVID-19 vaccines are based on antigen sequences of initial SARS-CoV-2 isolates that emerged in 2019. By mid 2021 these historical virus strains have been completely replaced by new cosmopolitan SARS-CoV-2 lineages. The ongoing pandemic has been further driven by emerging variants of concern (VOC) Alpha, Beta, Gamma and, lately predominant, Delta. These are characterized by an increased transmissibility and possible escape from naturally acquired or vaccine-induced immunity. We here show, using a YF17D-vectored first-generation COVID-19 vaccine (Sanchez-Felipe et al., 2021) and a stringent hamster challenge model (Abdelnabi et al., 2021) that the immunity elicited by a prototypic spike antigen is insufficient to provide optimal protection against the Beta VoC, urging for an antigenic update. We therefore designed an updated second-generation vaccine candidate that carries the sequence of a spike antigen that includes crucial epitopes from multiple VOCs. This vaccine candidate yielded a marked change in target antigen spectrum covered as demonstrated by (i) antigenic cartography and (ii) full protection against infection and virus-induced disease caused by any of the four VOCs (Alpha, Beta, Gamma and Delta) used for challenge. This more universal COVID-19 vaccine candidate also efficiently blocked direct transmission of VOC Delta from vaccinated infected hamsters to non-vaccinated sentinels under prolonged co-housing conditions. In conclusion, our data suggest that current first-generation COVID-19 vaccines need to be adapted to cover emerging sequence diversity of VOC to preserve vaccine efficacy and to contain virus spread at the community level.


Sujets)
COVID-19
11.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.11.10.467646

Résumé

Game animals are wildlife species often traded and consumed as exotic food, and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1725 game animals, representing 16 species and five mammalian orders, sampled across China. From this we identified 71 mammalian viruses, with 45 described for the first time. Eighteen viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high risk viruses. We identified the transmission of Bat coronavirus HKU8 from a bat to a civet, as well as cross-species jumps of coronaviruses from bats to hedgehogs and from birds to porcupines. We similarly identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Sujets)
Syndrome respiratoire aigu sévère
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.01.21265731

Résumé

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma’s spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma’s detection, and were largely transient after Gamma’s detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil’s COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil’s COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. Note The following manuscript has appeared as ‘Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals’ at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . One sentence summary COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.


Sujets)
COVID-19
13.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-753457.v1

Résumé

Finland has had a low incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infections as compared to most European countries. Here we report the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020. SARS-CoV-2 introduced to Finland in January 2020 and spread rapidly across southern Finland during spring. We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain, which might have been the source for a third of cases. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and effects of early intervention and public health measures.


Sujets)
Infections à coronavirus
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.23.21252268

Résumé

The emergence and rapid rise in prevalence of three independent SARS-CoV-2 '501Y lineages', B.1.1.7, B.1.351 and P.1, in the last three months of 2020 has prompted renewed concerns about the evolutionarily capacity of SARS-CoV-2 to adapt to both rising population immunity and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARS-CoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on immunologically important SARS-CoV-2 genes (such as N and S) that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.


Sujets)
COVID-19
15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252554

Résumé

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4–2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence Summary We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.


Sujets)
COVID-19
16.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-208849.v1

Résumé

Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting late summer that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here, we build a phylogeographic model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the COVID-19 resurgence in Europe. We inform this model using genomic, mobility and epidemiological data from 10 West European countries and estimate that in many countries more than 50% of the lineages circulating in late summer resulted from new introductions since June 15th. The success in onwards transmission of these lineages is predicted by SARS-CoV-2 incidence during this period. Relatively early introductions from Spain into the United Kingdom contributed to the successful spread of the 20A.EU1/B.1.177 variant. The pervasive spread of variants that have not been associated with an advantage in transmissibility highlights the threat of novel variants of concern that emerged more recently and have been disseminated by holiday travel. Our findings indicate that more effective and coordinated measures are required to contain spread through cross-border travel.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
17.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.06.22.165464

Résumé

Spatiotemporal bias in genome sequence sampling can severely confound phylogeographic inference based on discrete trait ancestral reconstruction. This has impeded our ability to accurately track the emergence and spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Despite the availability of unprecedented numbers of SARS-CoV-2 genomes on a global scale, evolutionary reconstructions are hindered by the slow accumulation of sequence divergence over its relatively short transmission history. When confronted with these issues, incorporating additional contextual data may critically inform phylodynamic reconstructions. Here, we present a new approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2, while also including global air transportation data. We demonstrate that including travel history data for each SARS-CoV-2 genome yields more realistic reconstructions of virus spread, particularly when travelers from undersampled locations are included to mitigate sampling bias. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations in the analyses. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts. Although further research is needed to fully examine the performance of our travel-aware phylogeographic analyses with unsampled diversity and to further improve them, they represent multiple new avenues for directly addressing the colossal issue of sample bias in phylogeographic inference.


Sujets)
COVID-19 , Syndrome de Kallmann
18.
Darlan da Silva Candido; Ingra Morales Claro; Jaqueline Goes de Jesus; William Marciel de Souza; Filipe Romero Rebello Moreira; Simon Dellicour; Thomas A. Mellan; Louis du Plessis; Rafael Henrique Moraes Pereira; Flavia Cristina da Silva Sales; Erika Regina Manuli; Julien Theze; Luis Almeida; Mariane Talon de Menezes; Carolina Moreira Voloch; Marcilio Jorge Fumagalli; Thais de Moura Coletti; Camila Alves Maia Silva; Mariana Severo Ramundo; Mariene Ribeiro Amorim; Henrique Hoeltgebaum; Swapnil Mishra; Mandev Gill; Luiz Max Carvalho; Lewis Fletcher Buss; Carlos Augusto Prete Jr.; Jordan Ashworth; Helder Nakaya; Pedro da Silva Peixoto; Oliver J Brady; Samuel M. Nicholls; Amilcar Tanuri; Atila Duque Rossi; Carlos Kaue Vieira Braga; Alexandra Lehmkuhl Gerber; Ana Paula Guimaraes; Nelson Gaburo Jr.; Cecilia Salete Alencar; Alessandro Clayton de Souza Ferreira; Cristiano Xavier Lima; Jose Eduardo Levi; Celso Granato; Giula Magalhaes Ferreira; Ronaldo da Silva Francisco Jr.; Fabiana Granja; Marcia Teixeira Garcia; Maria Luiza Moretti; Mauricio Wesley Perroud Jr.; Terezinha Marta Pereira Pinto Castineiras; Carolina Dos Santos Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila Lopes Simeoni; Julia Forato; Andrei Carvalho Sposito; Angelica Zaninelli Schreiber; Magnun Nueldo Nunes Santos; Camila Zolini Sa; Renan Pedra Souza; Luciana Cunha Resende Moreira; Mauro Martins Teixeira; Josy Hubner; Patricia Asfora Falabella Leme; Rennan Garcias Moreira; Mauricio Lacerda Nogueira; - CADDE-Genomic-Network; Neil Ferguson; Silvia Figueiredo Costa; Jose Luiz Proenca-Modena; Ana Tereza Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato Santana Aguiar; Oliver G Pybus; Ester Cerdeira Sabino; Nuno Rodrigues Faria.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.11.20128249

Résumé

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0 - -1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil.

19.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.05.28.122366

Résumé

RNA viruses are proficient at switching host species, and evolving adaptations to exploit the new hosts cells efficiently. Surprisingly, SARS-CoV-2 has apparently required no significant adaptation to humans since the start of the COVID-19 pandemic, with no observed selective sweeps since genome sampling began. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects significant positive episodic diversifying selection acting on the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in ancestral hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor [~]1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. Collectively our results demonstrate the progenitor of SARS-CoV-2 was capable of near immediate human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans.


Sujets)
COVID-19 , Co-infection
20.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.109322

Résumé

Accurate understanding of the global spread of emerging viruses is critically important for public health response and for anticipating and preventing future outbreaks. Here, we elucidate when, where and how the earliest sustained SARS-CoV-2 transmission networks became established in Europe and the United States (US). Our results refute prior findings erroneously linking cases in January 2020 with outbreaks that occurred weeks later. Instead, rapid interventions successfully prevented onward transmission of those early cases in Germany and Washington State. Other, later introductions of the virus from China to both Italy and Washington State founded the earliest sustained European and US transmission networks. Our analyses reveal an extended period of missed opportunity when intensive testing and contact tracing could have prevented SARS-CoV-2 from becoming established in the US and Europe.

SÉLECTION CITATIONS
Détails de la recherche